
EVOLUTIONARY APPROACH TO FINDING AN

OPTIMAL RACING LINE IN A VEHICLE SIMULATOR

2 0 2 3 / 2 0 2 4

PATRIK MIKČO

2

INTRODUCTION

W H A T I S T H E M A I N G O A L ?

• TORCS simulator

• Finding an optimal racing line

• Comparing results between known starting
parameters, a randomized set and built-in TORCS
simulator drivers

• Getting rid of the guessing game

2

PROBLEM DESCRIPTION

3

• Simulators fail to provide the best driving line

• Simulators require manual testing of each track, car etc.

• GA will determine the best track line to follow while dealing with speed and steering

• 2 fuzzy sub-controllers to host control logic for outputting the best speed and steering at every moment

• Wall damage is included, player collisions are excluded

• Goal is to drive fast and safely (fastest lap with minimal damage)

• Trapezoidal membership function defines the boundaries for fuzzy rules

TESTING ENVIRONMENT

4

• TORCS simulator

• Robot Operating System (ROS)

• TORCS client represents node in ROS

• Nodes communicate via messages
published to a provided topic

TORCS software architecture

Lap status message definition

FUZZY CONTROLLERS

• 19 distance sensors providing range from -90 to 90 degrees

• Sensors measure max distance from the vehicle to the edge of the track

• 3 sensors: Front (0 deg), M5 (+- 5 deg) and M10 (+- 10 deg)

• Speed range (0, 200)

• Steering range (-1, 1) full left and full right

5

GENETICKÝ ALGORITMUS

Š T R U K T Ú R A A L G O R I T M U

6

BIT ENCODING

7

• 10 racing vehicles in one generation

• Enough damages means removing the vehicle from the race

• Chromosome is made up of 3 parts (one for each sensor), each consists of 6 data points describing shape of
trapezoid function that define the values of Low, Medium and High

• x0 and x7 are not considered in chromosome encoding since they represent endpoints (0/200)

• Colors for x1 - x6 represent fuzzy value (blue = low, red = medium, yellow = high)

INITIALIZATION

8

• The population was initialized by two different methods in testing

1. Take parameters of a working set as the base of the population and keep the base individual as our first
population member. Then mutate the other 9 individuals using the built-in polynomial mutation. The
mutation rate for this change was 30%, with an 𝜂 value of 3. This method ensures at least one finishing driver
and faster found solution.

2. Random integer sampling function allowed better exploration of other solutions instead of relying on base
individual to start

SELECTION, CROSSOVER & MUTATION

• To determine what population members become parents, we will be going with a tournament selection

• Since the size of tournament will be 2, it is binary tournament selection

• The individual that has the highest fitness will be the one selected to move on to the next generation

• For the crossover operator, chosen method was simulated binary crossover

• This will produce new parameters in the offspring, also inheriting the parents’ old parameters

• The determined crossover rate was set to 0.7

• The mutation operator uses integer polynomial mutation for selecting genes to mutate in our chromosomes

• Mutations allow us exploration across search space so that we do not converge to a local minimum

• Chosen mutation rate was 0.3

9

REPAIR & FITNESS FUNCTION

• The repair function ensures that the fuzzy logic parameters meet the constraint for each sensor

• If the values do not follow the constraint, the value is replaced with a random integer value between the
points that surround this value

10

L – lap time
D - damage

• Goal is to drive fast and safely – function takes in each driver set of lap times in the current
generation, along with the damage they received

• The driver with the lowest score would be the fittest individual

• Scalar variabla a gives importance of achieving lower lap time over taking lower damage
• Damage is treated as a time penalty (other solution could be multi-objective optimization)

RESULTS

11

RESULTS

12

CONCLUSION

13

• Driver was able to successfully reduce its lap time through the generations and decrease overall damage

• Results indicate that experiment is right in line, if not better than the built-in AI drivers

• Improvements:

• mechanism makes sure that the driver stays close to the wall while on a straight segment of the track. Keeping car in
its boundary means that the driver made minor steering not to leave our defined boundary. This caused the driver to
wobble slightly.

• extending the project to consider fuel, tire friction, and other vehicle dynamics in the GA calculation could help
further lower our lap time.

THANK YOU FOR YOUR ATTENTION!
Odkaz na článok

https://chrisnosowsky.com/files/Evolutionary%20Approach%20to%20Finding%20an%20Optimal%20Racing%20LIne%20in%20a%20Vehicle%20Simulator.pdf

	Snímka 1: Evolutionary Approach to Finding an Optimal Racing Line in a Vehicle Simulator
	Snímka 2: INTRODUCTION
	Snímka 3: PROblem description
	Snímka 4: TESTING ENVIRONMENT
	Snímka 5: FUZZY Controllers
	Snímka 6: Genetický algoritmus
	Snímka 7: BIT encoding
	Snímka 8: Initialization
	Snímka 9: SELECTION, CROSSOVER & MUTATION
	Snímka 10: REPAIR & fitness function
	Snímka 11: results
	Snímka 12: results
	Snímka 13: conclusion
	Snímka 14: thank you for your attention!

