Path planning optimization of sixdegree-of-freedom robotic manipulators using evolutionary algorithms

> Authors: Sandi Baressi Šegota, Nikola Anđelić, Ivan Lorencin,Milan Saga and Zlatan Car

Source: [Path planning optimization of six-degree-of-freedom robotic](https://journals.sagepub.com/doi/epub/10.1177/1729881420908076) [manipulators using evolutionary algorithms \(sagepub.com\)](https://journals.sagepub.com/doi/epub/10.1177/1729881420908076)

Robert Danko 2023/2024

Introduction

- Minimizing the actuator torque, which dependnds on the joint trajectory
- **Less energy required**
- **Extending overall lifetime of manipulator**

Definition of the problem

- 2 cases:
- One robot manipulator with six DOFs and two such manipulators working together by following the same path
- ABB IRB 120 was used for testing
- Róbotic manipulators are transporting object with mass of 2kg along calculated path
- \blacktriangleright For path planning all joints start in position of 0 radians and finish in 1 radian
- Manipulators are stationary at the beginning and at the end of movement

Robot manipulator dynamics

- Two algorithms are used to determine dynamic equations
- Lagrange-Euler and Newton-Euler
- Getting kinematic matrix is crucial step for obtaining kinematic dynamics of the manipulator
- Kinematic matrix is also needed for calculating inverse kinematic equations used in the second case
- Kinematic matricies are obtained using Denavit-Hartenberg method

Used algorithms

- Genetic algorithm with average recombination
- Genetic algorithm with random recombination
- Simulated annealing with linear cooling strategy
- Simulated annealing with geometric cooling strategy
- Differential Evolution

Agent construction

Phenotype of the robotic manipulator movement is represented with a parameter of the equation

 $\theta(q)=at^4+bt^3+ct^2+dt+e$

Fitness function

■ Sum of the total torsion on each point of the trajectory, where total joint torque is defined as the sum of joint torques on each joint of the robotic manipulator(s)

$$
f(g) = \textstyle\sum_{m=1}^M \sqrt{\textstyle\sum_{i=1}^n \tau_i^2},
$$

 Observed cases have 20 points in trajectory and *n* is either 6 or 12, the fitness function for each of the two cases can be defined for the case with the single robotic manipulatoras

$$
f(g) = \sum_{m=1}^{20} \sqrt{\tau_1^2 + \tau_2^2 + \tau_3^2 + \tau_4^2 + \tau_5^2 + \tau_6^2},
$$

Results

GA-A: genetic algorithm with average recombination; GA-R: genetic algorithm with random recombination; SA-L: simulated annealing with linear cooling strategy; SA-G: simulated annealing with geometric cooling strategy; DE: differential evolution.

Results for single manipulator

Joint trajectory for single manipulator

Results for two manipulators

Joint trajectory for first manipulator

Joint trajectory for second manipulator

1.50

1.75

2.00

Results for two manipulators

First manipulator **Second manipulator** Second manipulator

Conclusion

- Successful optimization in both observed cases using evolutionary algorithms
- Genetic algorithm with random recombination for single robotic manipulator and with average recombination for dual cooperating manipulators are providing best results
- **In practice the amount of energy used for the robotic manipulators to** perform work could be lowered along with the longevity increase
- Optimization results are high quality for the used robotic manipulator
- Only used on the point-to-point path planning
- Future work could concentrate on multi-objective optimization that would attempt to lower the joint torques as one objective, and provide a smooth curve as the other and more equal joint torque distribution along with adding continuous path planning